

CUET – 2023 Original Paper

Comprehension: Sutapa Chakraborty

Rudyard Kipling honoured motherhood with these words: "God could not be everywhere and, therefore he made mothers." This is similar to what Sarada Devi, reffered to as Holy Mother by her disciples, would say quoting her husband, Ramalaishana Paramhansa: "He had the attitude of a mother towards all creations and he has left me behind to demonstrate this motherhood of God." That she said, was her purpose in life.

A mother's role is multifaceted. She is also her child's first teacher. And Sarada Devi fully imbibed and imparted the philosophy of 'Vieyan Vedanta', demonstrating how all those teachings could be applied to make our own lives blessed.

In her own way, she taught "as many faiths, so many paths", Brahmn, according to her, was in all things and in all creatures. Though the realised souls have imparted different teachings, and they don't say to same thing, however, since there are many paths leading to the same goal, all of their teachings are true. She gave a unique analogy for this. Imagine a tree with birds of different colours and plumage sitting and singing a wide variety of notes in varying octaves. We do not say that any one particular bird's chirp is the chirp, and the rest arc not. She would say that founders of all religions are realised souls and they have witnessed different aspects of God on the basis of their own experience, and they are all correct as they have indeed known the truth. They arc wrong in generalising it though. Actually, they arc only referring to different forms and aspects of one and the same infinite, divine reality.

Demonstrating harmony of religions in her day-to-day life and a mother's unconditional love for all, Sri Ma would say that the Muslim labourer called Amjad working for her was as much her son as was Sarat, Swami Saradrumnda, her personal attendant. When Sister Nivedita, Swami Vivekananda's disciple, came to visit her. Ma Sarada embraced and accepted her as her own daughter. She maintained that the infinite divine reality is nirgun formless, in one aspect, and also sagun, with form. Once, when asked by a monk, "Are you really the mother of all? Even the birds, insects and beasts?" She said "Yes". At her home in Jayrambati, West Bengal, when a monk once hit a cat, the Holy Mother was deeply hurt and said, "Don't beat it. Feed it so it will not steal food. I live in that cat."

Pray for desirelessness, was her advice. If one can entirely give up all wordly desires, they can get a vision of God right away, she believed. Her final and most profound teaching was that if you want peace of mind do not find faults with others. Rather, leans to see your own faults. "Leans to accept the whole world as your own. No one is a stranger, my child," she would say.

01. "God could not be every- where and therefore he made mother" who said this.

(1) Sarada Devi (2) Ramakrishna Paramahansa (c) Rudyard Kipling (4) Sutapa Chakraborty

Comprehension:

Sutapa Chakraborty

Rudyard Kipling honoured motherhood with these words: "God could not be everywhere and, therefore he made mothers." This is similar to what Sarada Devi, reffered to as Holy Mother by her disciples, would say quoting her husband, Ramalaishana Paramhansa: "He had the attitude of a mother towards all creations and he has left me behind to demonstrate this motherhood of God." That she said, was her purpose in life.

A mother's role is multifaceted. She is also her child's first teacher. And Sarada Devi fully imbibed and imparted the philosophy of 'Vieyan Vedanta', demonstrating how all those teachings could be applied to make our own lives blessed.

web. : inpsclasses.com

In her own way, she taught "as many faiths, so many paths", Bralunn, according to her, was in all things and in all creatures. Though the realised souls have imparted different teachings, and they don't say to same thing, however, since there are many paths leading to the same goal, all of their teachings are true. She gave a unique analogy for this. Imagine a tree with birds of different colours and plumage sitting and singing a wide variety of notes in varying octaves. We do not say that any one particular bird's chirp is the chirp, and the rest arc not. She would say that founders of all religions are realised souls and they have witnessed different aspects of God on the basis of their own experience, and they are all correct as they have indeed known the truth. They arc wrong in generalising it though. Actually, they arc only referring to different forms and aspects of one and the same infinite, divine reality.

Demonstrating harmony of religions in her day-to-day life and a mother's unconditional love for all, Sri Ma would say that the Muslim labourer called Amjad working for her was as much her son as was Sarat, Swami Saradrumnda, her personal attendant. When Sister Nivedita, Swami Vivekananda's disciple, came to visit her. Ma Sarada embraced and accepted her as her own daughter. She maintained that the infinite divine reality is nirgun formless, in one aspect, and also sagun, with form. Once, when asked by a monk, "Are you really the mother of all? Even the birds, insects and beasts?" She said "Yes". At her home in Jayrambati, West Bengal, when a monk once hit a cat, the Holy Mother was deeply hurt and said, "Don't beat it. Feed it so it will not steal food. I live in that cat."

Pray for desirelessness, was her advice. If one can entirely give up all wordly desires, they can get a vision of God right away, she believed. Her final and most profound teaching was that if you want peace of mind do not find faults with others. Rather, leans to see your own faults. "Leans to accept the whole world as your own. No one is a stranger, my child," she would say.

02. 'Vigyan Vedanta' philosophy could be applied to make our lives blessed. Sarada Devi fully imbibed and imparted this philosophy.

Here imbibed means _____(1) Kill ideas or Knowledge

(2) Literary absorb (ideas or knowledge)(4) Absorb water

Comprehension: Sutapa Chakraborty

(3) Drink (alcohol)

Rudyard Kipling honoured motherhood with these words: "God could not be everywhere and, therefore he made mothers." This is similar to what Sarada Devi, reffered to as Holy Mother by her disciples, would say quoting her husband, Ramalaishana Paramhansa: "He had the attitude of a mother towards all creations and he has left me behind to demonstrate this motherhood of God." That she said, was her purpose in life.

A mother's role is multifaceted. She is also her child's first teacher. And Sarada Devi fully imbibed and imparted the philosophy of 'Vieyan Vedanta', demonstrating how all those teachings could be applied to make our own lives blessed.

In her own way, she taught "as many faiths, so many paths", Bralunn, according to her, was in all things and in all creatures. Though the realised souls have imparted different teachings, and they don't say to same thing, however, since there are many paths leading to the same goal, all of their teachings are true. She gave a unique analogy for this. Imagine a tree with birds of different colours and plumage sitting and singing a wide variety of notes in varying octaves. We do not say that any one particular bird's chirp is the chirp, and the rest arc not. She would say that founders of all religions are realised souls and they have witnessed different aspects of God on the basis of their own experience, and they are all correct as they have indeed known the truth. They arc wrong in generalising it though. Actually, they arc only referring to different forms and aspects of one and the same infinite, divine reality.

Demonstrating harmony of religions in her day-to-day life and a mother's unconditional love for all, Sri Ma would say that the Muslim labourer called Amjad working for her was as much her son as was Sarat, Swami Saradrumnda, her personal attendant. When Sister Nivedita, Swami Vivekananda's disciple, came to visit her.

[2]

web.: inpsclasses.com

Ma Sarada embraced and accepted her as her own daughter. She maintained that the infinite divine reality is nirgun formless, in one aspect, and also sagun, with form. Once, when asked by a monk, "Are you really the mother of all? Even the birds, insects and beasts?" She said "Yes". At her home in Jayrambati, West Bengal, when a monk once hit a cat, the Holy Mother was deeply hurt and said, "Don't beat it. Feed it so it will not steal food. I live in that cat."

Pray for desirelessness, was her advice. If one can entirely give up all wordly desires, they can get a vision of God right away, she believed. Her final and most profound teaching was that if you want peace of mind do not find faults with others. Rather, leans to see your own faults. "Leans to accept the whole world as your own. No one is a stranger, my child," she would say.

03. 'Plumage' means:

(1) A singing bird(3) A bird's feathers collectively

(2) A bird of unique colour(4) Number of birds chirping together

Comprehension: Sutapa Chakraborty

Rudyard Kipling honoured motherhood with these words: "God could not be everywhere and, therefore he made mothers." This is similar to what Sarada Devi, reffered to as Holy Mother by her disciples, would say quoting her husband, Ramalaishana Paramhansa: "He had the attitude of a mother towards all creations and he has left me behind to demonstrate this motherhood of God." That she said, was her purpose in life.

A mother's role is multifaceted. She is also her child's first teacher. And Sarada Devi fully imbibed and imparted the philosophy of 'Vieyan Vedanta', demonstrating how all those teachings could be applied to make our own lives blessed.

In her own way, she taught "as many faiths, so many paths", Bralunn, according to her, was in all things and in all creatures. Though the realised souls have imparted different teachings, and they don't say to same thing, however, since there are many paths leading to the same goal, all of their teachings are true. She gave a unique analogy for this. Imagine a tree with birds of different colours and plumage sitting and singing a wide variety of notes in varying octaves. We do not say that any one particular bird's chirp is the chirp, and the rest arc not. She would say that founders of all religions are realised souls and they have witnessed different aspects of God on the basis of their own experience, and they are all correct as they have indeed known the truth. They arc wrong in generalising it though. Actually, they arc only referring to different forms and aspects of one and the same infinite, divine reality.

Demonstrating harmony of religions in her day-to-day life and a mother's unconditional love for all, Sri Ma would say that the Muslim labourer called Amjad working for her was as much her son as was Sarat, Swami Saradrumnda, her personal attendant. When Sister Nivedita, Swami Vivekananda's disciple, came to visit her. Ma Sarada embraced and accepted her as her own daughter. She maintained that the infinite divine reality is nirgun formless, in one aspect, and also sagun, with form. Once, when asked by a monk, "Are you really the mother of all? Even the birds, insects and beasts?" She said "Yes". At her home in Jayrambati, West Bengal, when a monk once hit a cat, the Holy Mother was deeply hurt and said, "Don't beat it. Feed it so it will not steal food. I live in that cat."

Pray for desirelessness, was her advice. If one can entirely give up all wordly desires, they can get a vision of God right away, she believed. Her final and most profound teaching was that if you want peace of mind do not find faults with others. Rather, leans to see your own faults. "Leans to accept the whole world as your own. No one is a stranger, my child," she would say.

- **04.** Who were described as Sri Ma Sharda Devi's children in the passage. The list must include all the name described:
 - (1) Amjad, Sarat, Swami Vivekananda
 (2) Nivadita Amiad Sarat
- (2) Sarat, Swami Vivekanand
- (3) Nivedita, Amjad, Sarat
- (4) Nivedita, Swami Saradanand, Amjad, Sarat

Hazratganj, Lucknow Ph.: 9953737836, 9838162263, e-mail. id: info@inpsclasses.com

[3]

(1)40

Comprehension:

Sutapa Chakraborty

Rudyard Kipling honoured motherhood with these words: "God could not be everywhere and, therefore he made mothers." This is similar to what Sarada Devi, reffered to as Holy Mother by her disciples, would say quoting her husband, Ramalaishana Paramhansa: "He had the attitude of a mother towards all creations and he has left me behind to demonstrate this motherhood of God." That she said, was her purpose in life.

A mother's role is multifaceted. She is also her child's first teacher. And Sarada Devi fully imbibed and imparted the philosophy of 'Vieyan Vedanta', demonstrating how all those teachings could be applied to make our own lives blessed.

In her own way, she taught "as many faiths, so many paths", Bralunn, according to her, was in all things and in all creatures. Though the realised souls have imparted different teachings, and they don't say to same thing, however, since there are many paths leading to the same goal, all of their teachings are true. She gave a unique analogy for this. Imagine a tree with birds of different colours and plumage sitting and singing a wide variety of notes in varying octaves. We do not say that any one particular bird's chirp is the chirp, and the rest arc not. She would say that founders of all religions are realised souls and they have witnessed different aspects of God on the basis of their own experience, and they are all correct as they have indeed known the truth. They arc wrong in generalising it though. Actually, they arc only referring to different forms and aspects of one and the same infinite, divine reality.

Demonstrating harmony of religions in her day-to-day life and a mother's unconditional love for all, Sri Ma would say that the Muslim labourer called Amjad working for her was as much her son as was Sarat, Swami Saradrumnda, her personal attendant. When Sister Nivedita, Swami Vivekananda's disciple, came to visit her. Ma Sarada embraced and accepted her as her own daughter. She maintained that the infinite divine reality is nirgun formless, in one aspect, and also sagun, with form. Once, when asked by a monk, "Are you really the mother of all? Even the birds, insects and beasts?" She said "Yes". At her home in Jayrambati, West Bengal, when a monk once hit a cat, the Holy Mother was deeply hurt and said, "Don't beat it. Feed it so it will not steal food. I live in that cat."

Pray for desirelessness, was her advice. If one can entirely give up all wordly desires, they can get a vision of God right away, she believed. Her final and most profound teaching was that if you want peace of mind do not find faults with others. Rather, leans to see your own faults. 'Leans to accept the whole world as your own. No one is a stranger, my child," she would say.

05. Different aspects of God means: (A) Different nature of God (B) Different character of God (C) Different feature of God (D) Different identity of God Choose the most appropriate answer: (2) A, B, C, D only (1) A, B only (3) A, B, C only (4) D only **06.** Choose a word opposite in the meaning of the underlined word. History is replete with deeds of cruel and capricious kings. (2) Steady (3) Acquise (4) Humble (1) Erratic 07. Find out the missing number 5 6 1 7 ? 5 33 4 6 51 9 5 7 4 2

(2)44

(4) 48

Hazratganj, Lucknow Ph.: 9953737836, 9838162263, e-mail. id: info@inpsclasses.com

(3)46

IN	IPS CLASSES	[5]	web. : inpsclasses.com
08.	Out of the following	options select the word t	hat is correct spelt	
	(1) CONVELESEN	SE	(2) CONVALASEN	ICE
	(3) CONVALESEN	SE	(4) CONVALENSC	ENSE
09.	Ajay said, "This girl i	s the wife of the grands	on of my mother". Who	is Ajay to the girl?
	(1) Father	(2) Father-in-law	(3) Cousin	(4) Brother
10.	The monthly income income increased by	and expenditure of a per 15% and his expenditure	rson were Rs. 10,000 ar e by 8% . Then the perce	nd Rs. 6,000 respectively. Next year, his entage increase in his saving is:
	(1) 20%	(2) 25%	(3) 25.5%	(4) 52.5%
11.	Despite the family's in idiom implies that:	nsistence that she should	get married, She has <u>get</u>	her face against the idea. The underlined
	(1) She got out of the	e difficulty on her own	(2) She opposed the	idea with determination
	(3) She pitched herse	elf against her parents	(4) She refused to co	nfront and convince her parents
12.	The area of rhombus cm)	is 120 cm ² and length of	its one diagonal is 24 cr	n. Find the perimeter of the rhombus (in
	(1) 50	(2) 52	(3) 54	(4) 56
13.	Choose a synonym o	f the underlined word.		
	Rohit's <u>lugubrious</u> eu	llogy at the funeral of his	dog eventually made eve	eryone start gigling.
	(1) morass	(2) Sonorant	(3) Meloncholy	(4) Somber
14.	A serve deserved pur	nishment		
	(1) Reformation	(2) Retribution	(3) Revisionism	(4) Retreat
15.	An athlete take as mu athlete during the tim	uch time in running 200 in the car covers 2 km is	m as a car takes in cover	ring 500m. The distance covered by the
	(a) 500 m	(2) 600 m	(3) 750 m	(4) 800 m
16.	Which player has wo	n Gold in Women's Air p	oistol at the 65th Nation	al Shooting Championship, 2022?
	(1) Sanskriti Bana	(2) Divya T.S.	(3) Manu Bhaker	(4) Rhythm Sangwan
17.	Match List I with Lis	t II		
	List I		List II	
A.	Kailash Satyarthi		I. Chemistry	
B.	Abhijit Banerjee		II. Peace	
C.	Vinkatraman Ramakr	rishnan	III. Physics	
D.	Subrahmanyan Chan	drasekhar	IV. Economics	
	(1) A-II, B-IV, C-I, I	D-III	(2) A-IV, B-II, C-I,	D-III
	(3) A-II, B-IV, C-III	, D-I	(4) A-III, B-IV, C-I,	D-II

		•		[U]			web Inpsciasses.com
18.	Given belo	w are two s	tatements:				
	Statement	ts:					
	I. Rabindranath Tagore wrote many poems.						
	II. Ev	II. Every poet has aesthetic knowledge.					
	III. Ae	sthetic is a j	part of axiologica	l study.			
	Conclusion:						
	I. Ra	bindranath'	Tagore did differe	ent axio	logical studie	s.	
	II. He	followed t	he base of logic a	nd ethic	28.		
	(1) If only of	conclusion 1	[follow	(2) If c	only conclusio	on II follow	
	(3) If either	conclusior	n I or II follow	(4) If n	either conclu	sion I nor I	I follow
19.	Two boys a facing Eas directions a	and two gir t. Persons s are the boys	ls are playing car itting opposite to facing?	ds and a o each c	are seated at 1 other are not	North. East of the same	t, South and West of a table. No boy is e sex. One girl is facing South. Which
	(1) North a	and West	(2) East and No	orth	(3) East and	d West	(4) East and South
20.	Statement This pheno Statement In the light (1) Both St (3) Statement	I : When a speech of the above tatement I are called a contract of the above tatement I are corrected as a correct of the cor	ray of white light alled dispersion o ow is formed due re statements, cho and Statement II a ct but Statement I	t is passe f light. to disp oose the are corr I is incor	ed through a persion of sun most appropect (2) rrect (4)	prism, it get light by wat oriate answe Both State Statement I	ts splitted into its constituents colours. ter droplets. er from the options given below: ment I and Statement II are incorrect I is incorrect but Statement II is correct
21.	ISRO succ	essfully put	three satellites o	f which	country into	space orbit	t with PSLV-C53?
	(1) USA		(2) Singapore		(3) Brazil		(4) Spain
22.	If $\cot^2 45^\circ$	$-\sin^2 45^\circ$	$= K \sin^2 30^\circ x ta$	$n^2 45^\circ$ x	$x \sec^2 45$, the	en the value	e of K is
	(1)0		(2) 1		(3) 1.5		(4) 2
23.	Find the m	issing term	in the given num	ber seri	es: -1, 0, 7, 2	26, 63, ?, 2	15, 342,
	(1) 172	2	(2) 142		(3) 124		(4) 134
24.	A sum of n	noney doub	les itself on simp	le intere	st in 10 years	. Find the r	ate of interest annum.
	(1) 10%		(2) 12%		(3) 12.5%		(4)8%
25.	Who has b	een awarde	d the first prize i	n the Na	ational MSM	E Award 2	.022?
	(1) Assam		(2) Odisha		(3) Gujarat		(4) Uttar Pradesh
26.	Which of the A. Two B. Vet C. Product C. Product C. The known of the k	ne following to vectors a locity is not ojection of c e maximum own as grac e most appr C only	g is true : are said to be iden a vector quantity one vector on and a space rate of ch lient of scalar fun opriate answer fr (2) A and C on	itical if t other is a nange of ction. om the ly	heir differend not an applica f the function options giver (3) A and D	ce is zero. ation of dot n which is in n below : 0 only	t product. ncreasing direction of line function is (4) B and D only

web.: inpsclasses.com

27.	The unit vectors orthogonal to the vector $-\hat{i} + 2\hat{j} + 2\hat{k}$ and making equal angles with the x and y axis is (are)				
	(1) $\pm \frac{1}{3} \left(2\hat{i} + 2\hat{j} - 2\hat{k} \right)$ (2) $\pm \frac{1}{3} \left(\hat{i} + \hat{j} - \hat{k} \right)$	(3) $\pm \frac{1}{3} \left(2\hat{i} - 2\hat{j} - 2\hat{k} \right)$ (4) $\pm \frac{1}{3} \left(\hat{i} - 2\hat{j} - 2\hat{k} \right)$			
28.	Which of the following is a correct definition of volatile memory				
	(1) It does not retain its contents at high temperature				
	(2) It is to be kept in air tight box				
	(3) If loses its contents on failure of power su	apply			
	(4) It does not lose its content on failure of p	ower supply			
29.	Match List I with List II				
	List I	List II			
A.	Dog : Rabies : : Mosquito :	I. Bacteria			
B.	Amnesia : Memory : : Paralysis :	II. Liver			
C.	Meningitis : Brain : : Cirrhosis :	III. Movement			
D.	Influenza : Virus : : Typhoid :	IV. Malaria			
	(1) A-II, B-III, C-I, D-IV	(2) A-III, B-IV, C-II, D-I			
	(3) A-IV, B-III, C-II, D-I	(4) A-IV, B-III, C-I, D-II			
30.	Given below are two statements :				
	Statement I: If the roots of the quadratic equ	uation $x^2 - 4x - \log_3 a = 0$ are real, then the least value of a is 1/81.			
	Statement II : The harmonic mean of the root	ts of the equation $(5+\sqrt{2})x^2 - (4+\sqrt{5})x + (8+2\sqrt{5}) = 0$ is 2.			
	In the light of the above statements, choose the	he correct answer from the options given below :			
	(1) Both Statement I and Statement II are tru	ue (2) Both Statement I and Statement II are false			
	(3) Statement I is true but Statement II is fals	ee (4) Statement I is false but Statement II is true			
31.	Consider the expression $(a-1)*(((b+c)/3))$ optimal code generation (without any register	(b) + d). Let x be the minimum number of registers required by an r spill) algorithm for a load/store architecture in which			
	(i) Only load and store instructions can	have memory operands and			
	(ii) Arithmetic instructions can have only	y register or immediate operands. The value of x is			
	(1) 2 (2) 4	(3) 1 (4) 3			
32.	Given below are two statements : One is lab	elled as Assertion A and the other is labelled as Reason R.			
	Assertion A: If $a \neq b$ then $(ab) \neq (b, a)$				
	 Reason R: (4, -3) lies in quadrant IV. In the light of the above statements, choose the correct answer from the options given below: (1) Both a and R are true and R is the correct explanation of A (2) Both A and R are true but R is not the correct explanation of A (3) A is true but R is false (4) A is false but R is true. 				

[7]

[8]

- (1) the time its taken for the platter to make a full rotation
- (2) the time its taken for the read-write head to more into position over the appropriate track
- (3) the time it taken for the platter to rotate the correct sector under the head
- (4) to reduce number of bits in the field of instruction.
- **38.** Consider the adjoining diagram : What is the minimum number of different colours required to paint the figure such that no two adjacent regions have same colour?

[10]

46.	Let $a = \cos \frac{2\pi}{7} + i \sin \theta$	$\frac{2\pi}{7}, \alpha = a + a^2 + a^4$ and	d $\beta = a^3 + a^5 + a^6$ then	the equation whose root are α,β is		
	(1) $x^2 + x + 2 = 0$	(2) $x^2 + x - 2 = 0$	(3) $x^2 - x - 2 = 0$	$(4) x^2 - x + 2 = 0$		
47.	A RAM chip has a cap line needed to constru	pacity of 1024 words of act a 16 k × 16 RAM fr	8 bits each $(1k \times 8)$. Th rom 1 k × 8 RAM is	e number of 2×4 decoders with enable		
	(1) 5	(2) 4	(3)7	(4) 6		
48.	A triangle with vertice	es(4,0), (-1,-1), (3,5)	is			
	(1) Isosceles and right	angled	(2) Isosceles but not	right angled		
	(3) Right angled but no	ot isosceles	(4) Neither right angl	ed nor isosceles		
49.	Given below are two	statements : One is labe	eled as Assertion A and t	he other is labelled as Reason R.		
	Assertion A : If the A	.M. and G.M. between	two numbers are in the	ratio m : n, then the numbers are in the		
	ratio $m + \sqrt{m^2 - n^2}$:	$m - \sqrt{m^2 - n^2}$				
	Reason R : If each te	rm of a G. P. be raised t	o the same power, the r	esulting sequence also forms a G.P.		
	In the light of the abov	ve statements, choose th	e correct answer from t	he options given below :		
	(1) Both A and R are t	rue and R is the correct	explanation of A			
	(2) Both A and R are true but R is not the correct explanation of A					
	(3) A is true but R is fa	llse				
	(4) A is false but R is t	rue				
50.	Observe the following	premises and select the	correct conclusion :			
	Major premise : All engineers are innovative					
	Minor premise : All s	students are engineers.				
	Conclusions :					
	(1) All innovative are s	students	(2) All studer	ts are innovative		
	(3) No innovative are	students	(4) No engine	eers are students		
51.	Given below are two s	statements :				
	Statement I : The nu 1, 2, 1, 0, 2, 2 is 50.	umber of different num	ber each of 6 digits tha	t can be formed by using all the digits		
	Statement II : These	are 4536 possibilities of	writing the four digit nu	umbers which have all distinct digits.		
	In the light of the abov	ve statements, choose th	e correct answer from t	he options given below :		
	(1) Both Statement I a	and Statement II are true	e (2) Both Stat	ement I and Statement II are false		
	(3) Statement I is true	but Statement II is false	e (4) Statemen	t I is false but Statement II is true		
52.	If each of n numbers	$x_i = i$ replaced by $(i + 1)$	$(1)x_{i}$, then the new mean	is		
	$(1) \frac{(n+1)(n+2)}{n}$	(2) n + 1	(3) (n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)	$(4) \frac{(n+2)}{6}$ (4) $\frac{(n+1)(5n+4)}{6}$		

11	IPS CLASSES	[1	1]	web. : inpsclasses.com
53.	The moment of the co respectively, is	ouple formed by the force	es $5\hat{i} + \hat{k}$ and $-5\hat{i} - \hat{k}$ ac	ting at the point $(9, -1, 2)$ and $(3, -2, 1)$
	(1) $11\vec{r} - \hat{j} + 5\hat{k}$	$(2) -\hat{i} + 11\hat{j} - 5\hat{k}$	$(3) -\hat{i} + 11\hat{j} + 5\hat{k}$	(4) $\hat{i} - \hat{j} - 5\hat{k}$
54.	Find the missing term	n in the given series: 4, 1	0, ?, 82, 244, 730.	
	(1) 24	(2) 28	(3) 77	(4) 218
55.	The number of 1's in	the binary representation	on of (3 * 4096 + 15 * 2	256 + 5 * 16 + 3) is
	(1) 8	(2)9	(3) 10	(4) 12
56.	The two adjacent side third side is 3, the rem	es of a circle QUADRIL naining fourth side is	ATERAL are 2 and 5 and	nd the angle between them is 60°. If the
	(1) 2	(2) 3	(3) 4	(4) 5
57.	If f and g are differen $c \in]0,1[$.	tiable functions in (0, 1)	satisfying $f(0) = 2 = g($	1), $g(0) = 0$ and $f(1) = 6$, then for some
	(1) $2f'(c) = g'(c)$	(2) $2f'(c) = 3g'(c)$	(3) $f'(c) = g'(c)$	(4) $f'(c) = 2g'(c)$
58.	If A, B and C are acu	te positive angles such	that $A + B + C = \pi$ and	$\cot A \cot B \cot C = K$, then
	$(1) \ \mathbf{K} \le \frac{1}{3\sqrt{3}}$	(2) K $\ge \frac{1}{3\sqrt{3}}$	(3) K < $\frac{1}{9}$	(4) $K > \frac{1}{9}$
59.	If \oplus and \odot denote the following is not correct	the exclusive OR and exct?	clusive NOR operation	ns, respectively, then which one of the
	(1) $\overline{P \oplus Q} = P \odot Q$	(2) $\overline{\mathbf{P}} \oplus \mathbf{Q} = \mathbf{P} \odot \mathbf{Q}$	(3) $\overline{\mathbf{P}} \oplus \overline{\mathbf{Q}} = \mathbf{P} \oplus \mathbf{Q}$	$(4) \left(P \oplus \overline{P} \right) + Q = \left(P \odot \overline{P} \right) \odot \overline{Q}$
60.	Given below are two	statements :		
	Statement I : The ar	ngle between the vectors	s $2\hat{i} + 3\hat{j} + \hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$	$-\hat{\mathbf{k}}$ is $\pi/2$.
	Statement II : The v	vector $\vec{a} \times (\vec{b} \times \vec{c})$ is copl	lanar with \vec{a} and \vec{b} .	
	In the light of the abo	ve statements, choose th	ne correct answer from the	he options given below:
	(1) Both Statement I	and Statement II are true	e (2) Both Stat	ement I and Statement II are false
	(3) Statement I is true	e but Statement II is false	e (4) Statemen	t I is false but Statement II is true
61.	Given below are two	statements : One is labe	elled as Assertion A and t	the other is labelled as Reason R.
	Assertion \mathbf{A} : $f(\mathbf{x}) = \mathbf{t}$	$\tan^2 x$ is continuous at x	$=\pi/2$	
	Reason R : $g(x) = x^2$	² is continuous at $x = \pi/2$	/2	
	In the light of the abo	ve statements, choose th	e correct answer from the	he options given below :
	(1) Both A and R are	true and R is the correct	t explanation of A	
	(2) Both A and R are	true but R is not the cor	rect explanation of A	

- (3) A is true but R is false
- (4) A is false but R is true

IN	PS CLASSES		2]	web. : inpsclasses.com
62.	If w, x, y, z are Boolea	nn variables, then which o	of the following is incorr	ect?
	(1) wx + w(x + y)+	x(x+y) = x + wy	(2) $\overline{w\overline{x}+(y+z)}+\overline{w}x$	$\mathbf{x} = \overline{\mathbf{w}} + \mathbf{x} + \overline{\mathbf{y}}\mathbf{z}$
	$(3)\left(w\overline{x}\left(y+x\overline{z}\right)+\overline{w}\right)$	$\overline{\mathbf{x}} \mathbf{y} = \mathbf{x}\overline{\mathbf{y}}$	(4) (w+y)(wxy+w	(yyz) = wxy + wyz
63.	A circle S passes throu Then	ugh the point (0, 1) and i	s orthogonal to the circle	es $(x-1)^2 + y^2 = 16$ and $x^2 + y^2 = 1$.
	(1) Radius of S is 8	(2) Radius of S is 7	(3) Centre of S is $(-7, -7)$	(4) Centre of S is (-8, 1)
64.	Given below are two s	statements:		
	Statement I: $\int_{-a}^{a} f(x) dx$	$dx = \int_{0}^{a} \left[f(x) + f(-x) \right] dx$	x	
	Statement II: $\int_{0}^{1} \sqrt{(1+1)^2}$	$(1+x)(1+x^3) dx$ is less that	an or equal to 15/8.	
	In the light of the above	ve statements, choose the	e most appropriate answ	er from the options given below:
	(1) Both Statement I a	and Statement II are true	e (2) Both State	ement I and Statement II are false
	(3) Statement I is true	but Statement II is false	(4) Statement	I is false but Statement II is true
65.	The point(s) at which	function f is given by $f(x)$	$\mathbf{x} = \begin{cases} \frac{\mathbf{x}}{ \mathbf{x} }; & \mathbf{x} < 0 \\ -1; & \mathbf{x} \ge 0 \end{cases} \text{ is contractions}$	ontinuous is/are
	(1) $\mathbf{x} \in \mathbf{R}$	(2) $x = 0$	$(3) \ x \in \mathbb{R} \setminus \{0\}$	(4) –I and I
66.	If every pair from amo root, then the product	ang the equation $x^2 + px$ t of three common root i	$+qr = 0, x^{2} + qx + rp = s$	0 and $x^2 + rx + pq = 0$ has a common
	(1) pqr	(2) 2pqr	(3) $p^2 q^2 r^2$	(4) $p^2 q r^2$
67.	The top of a hill obser respectively. The heigh	rved from the top and bo ht of the hill is:	ottom of a building of he	ight h is at angles of elevation p and q
	(a) $\frac{h \cot q}{\cot q - \cot p}$	(2) $\frac{h \cot p}{\cot p - \cot q}$	$(3) \frac{h \tan p}{\tan p - \tan q}$	$(4) \frac{h \sec p}{\tan p - \tan q}$
68.	Each of the angle betw	veen vectors \vec{a}, \vec{b} and \vec{c}	is equal to 60°. If $\left \vec{a} \right = 4$,	$\left \vec{b} \right = 2$ and $\left \vec{c} \right = 6$ then the modulus of
	$\vec{a} + \vec{b} + \vec{c}$ is			
	(1) 10	(2) 15	(3) 12	(4) 20

IN	IPS CLASSES [1	3]	web. : inpsclasses.com
69.	Match List I with List II List I	List II	
A.	Addition Theorem of probability	I. $P\left(\frac{Ei}{A}\right) = \frac{P(Ei)P(A / Ei)}{\sum_{i=1}^{n} P(Ei)P(A / Ei)}, i =$	= 1, 2
B.	Binomial distribution	II. $P(A \cap B) = P(A)P\left(\frac{B}{A}\right)$, if P	$P(\mathbf{A}) \neq 0$
C.	Baye's rule	III. $P(A \cup B) = P(A) + P(A) + P(A)$	$P(B) - P(A \cap B)$
D.	Multiplication theorem on probability	IV. $P(x = r) = {}^{n} C_{r} p^{r} q^{n-r}, r = 0, 1,$, n
	Choose the correct answer from the options g (1) A-III, B-IV, C-I, D-II (3) A-III, B-II, C-IV, D-I	iven below: (2) A-III, B-IV, C-II, D-I (4) A-III, B-I, C-IV, D-II	
70.	For $0 < \theta < \frac{\pi}{2}$, the solution(s) of $\sum_{m=1}^{6} \cos ec$	$\left(\theta + (m-1)\frac{\pi}{4}\right)\cos ec\left(\theta + \frac{m\pi}{4}\right) = 4$	$4\sqrt{2}$ is/are
	(A) $\frac{\pi}{4}$ (B) $\frac{\pi}{6}$	(C) $\frac{\pi}{12}$ (D) $\frac{5\pi}{12}$	
	Choose the correct answer from the options g	iven below:	
	(1) A and B only (2) C and D only	(3) A and C only (4) B and	D only
71. A. B. C. D.	Match List I with List II LIST I No. of triangles formed using 5 points in a line No. of diagonals drawn using the vertices of a The no. of diagonals in a regular polygon of 1 A polygon with 35 diagonals has sides Choose the correct answer from the options g (1) A-I, B-II, C-III, D-IV (3) A-III, B-IV, C-I, D-II	LL e and 3 points on parallel line is n octagon II. 00 sides is III iven below: (2) A-II, B-III, C-I, D-IV (4) A-III, B-I, C-IV, D-II	IST II 20 10 I. 45 7. 4850
72.	Match List I with List II LIST I	LIST II	
A.	Value of $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{\sin x}{x-\sin x}}$ is	I. e^3	
B.	Value of is $\lim_{x\to 0} \int_{0}^{x} \frac{\sin t^2 dt}{x^2}$ is	П. 0	
C.	Value of $\lim_{x\to 0} (e^{2x} + x)^{\frac{1}{x}}$ is	III. 1	
D.	Value $\lim_{x\to a} \frac{\log(x-a)}{(e^x - e^a)}$ of	IV. e^{-1}	
	Choose the correct answer from the options g	iven below:	
	(1) A-II, B-III, C-I, D-IV (3) A-IV, B-II, C-III, D-I	(2) A-II, B-IV, C-III, D-I (4) A-IV, B-II, C-I, D-III	

	INPS CLASSES	[14]		web. : inpsclasses.com			
73.	Match List I with List II						
	LIST I	LIST	ГП				
A.	8:81::64:?	I.	290				
B.	182:?::210:380	II.	132				
C.	42:56:110:?	III. NZ	342				
D.	48:122:108:? Choose the correct answer from the option	IV.	020 Iow:				
	(1) A-II B-I C-IV D-III	(2) A	IUW. A-III B-II C-	I D-IV			
	(3) A-II. B-III. C-IV. D-I	(2) (4) A	-IV. B-III. C	-II. D-I			
74	Which of the fellowing is true :		· , , , -	,			
/4.		1 • •	1 11				
	A. If $a \cos A = b \cos B$, then the triang	le 1s 1sosce	eles or right a				
	B. If in a triangle ABC. $\cos A \cos B + \frac{1}{2}$	sin A sin E	$3 \sin C = 1$ then	the triangle is isosceles right angled.			
	C. If the ex-radii r1, r2, r3 of \triangle ABC	are in the	HP, then it's s	ides are not in AP			
	Choose the correct answer from the option	s given be	low :				
	(1) A and B only (2) B and C only	(3) B	and C only	(4) B only			
75.	Given below are two statements · One is la	belled as A	Assertion A ar	d the other is labelled as Reason R			
	Assortion A : If dot product and cross p	roduct of	$\vec{\mathbf{A}}$ and $\vec{\mathbf{P}}$ ar	e zero, it implies that one of the vector			
	Assertion A . If dot product and cross p	Toduct of	A and D a	e zero, it implies that one of the vector			
	A and B must be null vector						
	Reason R : Null vector is a vector with a z	ero magn	itude.				
	In the light of the above statements, choose	n the light of the above statements, choose the correct answer from the options given below :					
	(1) Both A and R are true and R is the corre	ect explan	ation of A				
	(2) Both A and R are true but R is not the co	orrect exp	olanation of A				
	(3) A is true but R is false						
	(4) A is false but R is true						
76.	If A B and C are any three sets, then						
	(A) A $(\mathbf{R} \cap \mathbf{C}) = (\mathbf{A} \cap \mathbf{R}) (\mathbf{A} \cap \mathbf{C})$	(P)	$(\mathbf{P} \mid \mathbf{C}) =$	$(A P) \cap (A C)$			
	$(\mathbf{A}) \mathbf{A}^{-} (\mathbf{B}^{-}) \mathbf{C}^{-} (\mathbf{A}^{-}) \mathbf{B}^{-} (\mathbf{A}^{-}) \mathbf{C}^{-}$	(b) /	н-(вос)-	$(\mathbf{A} - \mathbf{b}) \cap (\mathbf{A} - \mathbf{c})$			
	(C) $n(A-B) = n(A) - n(A \cap B)$	(D) /	$A \cap (B - C) =$	$=(A \cap B) \cap (A - C)$			
	Choose the most appropriate answer from t	he option	s given below				
	(1) A, B, C only (2) B, C, D only	(3) C	C, D only	(4) B, C only			
77	Motob List Lwith List H						
//.	LIST I	LIST	ГĦ				
			4.5%				
A.	$ \mathbf{A} + \mathbf{B} = \mathbf{A} - \mathbf{B} $	1.	45°				
B.	$ \vec{A} \times \vec{B} = \vec{A} \cdot \vec{B}$	П.	30°				
2.			20				
С	$ \vec{A} \cdot \vec{B} = \frac{AB}{AB}$	Ш	900				
C.		111.	70				
D	$ \vec{A} \times \vec{B} = AB$	117	CO 0				
<i>D</i> .	$ \mathbf{A} \times \mathbf{B} = \frac{1}{2}$	1 V.	00°				
	Choose the correct answer from the options	s given bel	low:				
	(1) A-III, B-I, C-IV, D-II	(2) A	-III, B-II, C-	IV, D-IV			
_	(3) A-III, B-I, C-II, D-IV	(4) A	-II, B-I, C-II	I, D-IV			
	Hazratganj, Lucknow Ph.: 9953737830	6, 98381	62263, e-m	ail. id: info@inpsclasses.com			

[15]

78.	If, x, y, z are all distin	ct and $\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ & & 2 & 1+x^3 \end{vmatrix}$	= 0, then the value of xy	zis		
	(1) 2	$\begin{vmatrix} z & z^{-} & 1+z^{-} \end{vmatrix}$	(2) 2	(4) 0		
	(1) - 2	(2) - 1	(3) - 3	(4)0		
79.	These are eight membris Priya's mother-in- brother-in-law of Brarelated to Ziva?	pers in the family. Bravo law. Ziva is a married v avo. Smith is the eldest r	and Priya are siblings. Any voman and is older than nale in the family. Angel i	gel is Kajal's grand daughter, Kajal who Tim. Tim is the son of Sam who is the is not Ziva's daughter. So how is Bravo		
	(1) Son	(2) Husband	(3) Brother-in-law	(4) Son-in-law		
80.	Find out the trend and	d choose the missing cha	aracter from given alterna	ntive.		
	2 5	10				
	17 ?	37				
	50 65	82				
	(1) 20	(2) 26	(3) 27	(4) 32		
81.	The number of possibalgebra is	ble Boolean functions the	at can be defined for n Bo	oolean variables over n-valued Boolean		
	(1) n^{2^n}	(2) 2^{n^2} f	(3) 2^{2^n}	(4) n^{n^n}		
82.	The tangent to the hy	perbola $x^2 - y^2 = 3$ are	parallel to the straight lin	the $2x + y + 8 = 0$ at the following points:		
	(1) (2, 2), (1, 2)	(2) (2, -1), (-2, 1)	(3) (-2, -1), (1, 2)	(4) (-2, -1), (-1, -2)		
83.	The mean deviation	from the mean of the A	P a, a + d, a + 2d, a	+ 2nd is		
	(1) n(n+1)d	$(2) \ \frac{n(n+1)d}{2n+1}$	$(3) \frac{n(n+1)d}{2n}$	$(4) \ \frac{n(n-1)d}{2n+1}$		
84.	Given below are two	statements : One is leb	elled as Assertion A and t	the other is labelled as Reason R.		
	Assertion A: $\int_{-3}^{3} (x^3 + 5) dx = 30$					
	Reason R : $f(x) = x^3$	+5 is an odd function				
	In the light of the abo	ve statements, choose the	he correct answer from th	he options given below :		
	(1) Both A and R are	true and R is the correct	et explanation of A			
	(2) Both A and R are	true but R is not the con	rrect explanation of A			
	(3) A is true but R is false					

- (4) A is false but R is true
- 85. Given below are two statements : One is lebelled as Assertion A and the other is labelled as Reason R. Assertion A : The number of parallelograms in a chess board is 1296.

Reason R : The number of parallelograms when a set of m parallel lines is intersected by another set of n parallel lines is ${}^{n}C_{2} \cdot {}^{n}C_{2}$.

In the light of the above statements, choose the correct answer from the options given below :

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is not the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true

IN	IPS CLASSES	[]	16]	web. : inpsclasses.com		
86.	A person goes in for a paper. The number of	an examination in whic of ways in which one c	ch there are four papers an get 2m marks is	with a maximum of m marks from each		
	(1) $\frac{1}{3}(m+1)(2m^2+$	4m+1)	(2) $\frac{1}{3}(m+1)(2m^2 +$	$(2) \ \frac{1}{3} (m+1) (2m^2 + 4m + 2)$		
	(3) $\frac{1}{3}(m+1)(2m^2+$	4m + 3)	(4) $^{2m+3}C_3$			
87.	57. The H.P. of two numbers is 4 and the arithmetic mean A and geometric mean G satisfy the relation the numbers are					
	(1) 6, 3	(2) 5, 4	(3) 5, -25	(4) -3, 1		
88.	Given the following b	inary number in 32 - bit	(single precision) IEEE-	-754 format :		
	0011 1110 0110 110	1 0000 0000 0000 000	00			
	The decimal value clo	sest to this floating poir	nt number is	number is		
	(1) 1.45×10^{1}	(2) 1.45×10^{-1}	(3) 2.27×10^{-1}	(4) 2.27×10^{1}		
89.	If A_1, A_2 be two AM	I's and G_1, G_2 be two	GM's between a and b,	then $\frac{A_1 + A_2}{G_1 G_2}$ is equal to		
	(1) $\frac{a+b}{2ab}$	(2) $\frac{2ab}{a+b}$	$(3) \ \frac{a+b}{ab}$	$(4) \ \frac{a+b}{\sqrt{ab}}$		
90.	If the curve $ay + x^2 =$	= 7 and $x^3 = y.cut$ orth	hogonally at $(1, 1)$ then t	he value of a is		
	(1) 1	(2) 6	(3)-6	(4) 0		
91.	Given below are two	statements : One is leb	elled as Assertion A and	the other is labelled as Reason R.		
	Assertion A: An elevator starts with in passengers and stops at n floors $(m \le n)$. The probability that no two					
	passangers alight at th	$rac{}^{n}P_{m}$				
	passengers anglit at the same moor is $-\frac{m}{m}$.					

Reason R : If (n+1) p is an integer, say in, then $P(x = r) = {}^{n} C_{r} p^{\Omega} (1-p)^{m-\Omega}$ is maximum when r = in or r = -1In the light of the above statements, choose the most appropriate answer from the options given below :

(1) Both A and R are correct and R is the correct explanation of A

(2) Both A and R are correct but R is not the correct explanation of A

(3) A is correct but R is not correct

(4) A is not correct but R is correct

92. If $f: R \to R$ defined as of $f(x) = x^2 + 1$ then minimum value of f(x) is

(1) 4 (2) 3 (3) 2 (1) 1

93. A 32 bit wide main memory with a capacity of 1 GB is built using $256 \text{ m} \times 4$ bits DRAM chips. The number of rows memory cells in the DRAM chip is 2^{14} . The time taken to perform one refresh operation is 50 nanoseconds. The refresh period is 2 milli seconds. The percentage (rounded to the closest integer) of the time available for performing the memory read/write operations in the main memory unit is _____.

(1) 56 (2) 59 (3) 54 (4) 61

[17]

94. Given below are two statements : One is lebelled as Assertion A and the other is labelled as Reason R.

Assertion A : If two circles intersect at two points, then the line joining their centres is perpendicular to the common chord.

Reason R: The perpendicular bisectors of two chords of a circle intersect at its centre.

In the light of the above statements, choose the correct answer from the options given below :

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is not the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true
- 95. If $\sin\beta$ is the GM between $\sin\alpha$ and $\cos\alpha$, then $\cos 2\beta$ is equal to

(1)
$$2\sin^2\left(\frac{\pi}{4}-\alpha\right)$$
 (2) $2\cot^2\left(\frac{\pi}{4}-\alpha\right)$ (3) $2\cos^2\left(\frac{\pi}{4}-\alpha\right)$ (4) $2\sin^2\left(\frac{\pi}{4}+\alpha\right)$

- 96. If a chord which is normal to the parabola $y^2 = 4ax$ at one end subtends a right angle at the vertex, then its slope is
 - (1) 1 (2) $\sqrt{3}$ (3) $\sqrt{2}$ (4) 2
- 97. If \hat{n}_1, \hat{n}_2 are two unit vectors and θ is the angle between them, then $\cos\frac{\theta}{2}$ is equal to

$$(1) \frac{1}{2} |\hat{\mathbf{n}}_1 + \hat{\mathbf{n}}_2| \qquad (2) \frac{1}{2} |\hat{\mathbf{n}}_1 - \hat{\mathbf{n}}_2| \qquad (3) \frac{1}{2} |\hat{\mathbf{n}}_1 \cdot \hat{\mathbf{n}}_2| \qquad (4) \frac{1 \hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2}{2 |\hat{\mathbf{n}}_1| |\hat{\mathbf{n}}_2|}$$

(1) hexa, sign (2) sign, hexa (3) positive, negative (4) negative, positive

- 99. If each observation of Row data whose variance is σ^2 is multiplied by h, then the variance of the new set is (a) σ^2 (2) $h^2 \sigma^2$ (3) $h \sigma^2$ (4) $h + \sigma^2$
 - (a) 0 (2) II 0 (3) II0 (4)
- **100.** Which of the following functions is differentiable at x = 0?

(1) $\cos(|x|) + |x|$ (2) $\cos(|x|) - |x|$ (3) $\sin(|x|) + |x|$ (4) $\sin(|x|) - |x|$