Analytical Ability \& Logical Reasoning

Question 1 and are based on the following:
A boy is asked to put in a basket one mango when ordered 'Three' and is asked to take out from the basket one mango and an orange when ordered 'Four'. A sequence of order is given as 12332142314223314113234.

1. How many total fruits will be in the basket at the end of the above order sequence?
(a) 9
(b) 8
(c) 11
(d) 10
2. How many total oranges were in the basket at the end of the above sequence ?
(a) 1
(b) 4
(c) 3
(d) 2

Question from 3 to 6 are based on the following:

Eight friends J, K, L, M, N, O, P and Q live on eight different floors of a building but not necessarily in same order. The lower most floor of the building is numbered one, the above that numbered two and so on until the top most floor is numbered eight.

- J lives on floor numbered six.
- Only one person lives between and L.
- Only one person lives between O and P.
- O lives above P.
- K lives on an even numbered floor but not on the floor numbered two.
- Q does not live on the lower most floor.
- N lives on one of the floor above Q.

3. If P and L interchange their places, who will live between P and M ?
(a) O
(b) L
(c) J
(d) None of these
4. Which of the following is true about M ?
(a) K lives immediately above M.
(b) Only two people live between M and Q.
(c) M lives on an odd numbered floor.
(d) M lives on the lower most floor.
5. Who amongst the following lives on the floor number eight?
(a) P
(b) O
(c) K
(d) Cannot be determine
6. Three of the following four are alike in certain way based on the given arrangement and thus form a group. Which of the following does not belong to the group ?
(a) PL
(b) MQ
(c) LN
(d) OM

Question from 7 to 9 are based on the following:

A team must be selected from the ten probable players A, B, C, D, E, F, G, H, I and J. Of these A, C, E and J are forwards B, G and H are point guards and D, F and I are defenders.

- The team must have at least one forward one point guard and one defender.
- If the team includes J, it must also include F.
- The team must include E or B, but not both.
- If the team includes G, it must also include F.
- The team must include exactly one among C, G and I.
- C and F cannot be members of the same team.
- D and H cannot be members of the same team.
- The team must include both A and D or neither of them.
- There is no restriction on the number of members in the team.

7. What would be the sixe of the largest possible team ?
(a) 7
(b) 6
(c) 5
(d) 4
8. Which of the following cannot be included in a team of size 6 ?
(a) A
(b) H
(c) J
(d) E
9. What could be the maximum size of the team that includes G ?
(a) 4
(b) 5
(c) 6
(d) more than 6
10. A family has several children. Each boy in this family has as many sisters as brothers but each girls has twice as many brothers as sister. How many brothers and sister are there ?
(a) 1 and 2
(b) 3 and 4
(c) 6 and 3
(d) 4 and 3
11. In a certain code language 134 means 'good and tasty' 478 means 'see good picture' and 729 means 'picture are faint'. Which of the following numerical numbers stand for see ?
(a) 2
(b) 7
(c) 8
(d) 1
12. If the English word EXAMINATION is coded as 56149512965, then word GOVERNMENT can be coded as;
(a) 7655955552
(b) 7644954452
(c) 7645954552
(d) 7644956552
13. Fact1: Most stuffed toys are stuffed with beans.

Fact2 : There are stuffed bears and stuffed tigers.
Fact3 : Some chairs are stuffed with beans.
If the above statement are fact, which of the following statements, must also be fact?

1. Only children's chairs are stuffed with beans.
2. All stuffed tigers are stuffed with beans.
3. Stuffed monkeys are not stuffed with beans.
(a) 1 is fact
(b) Only 2 is fact
(c) Both 2 and 3 are fats
(d) None of the statements 1, 2, 3 are true.
4. If all the 6's are replaced by 9's, then the algebraic sum of all the numbers from 1 to 100 (both inclusive), varies by;
(a) 333
(b) 300
(c) 279
(d) 330
5. 405 sweets were distributed equally among a group of children such that the number of sweet received by each child is one fifth of the number of children. The number of children in the group is;
(a) 45
(b) 9
(c) 21
(d) 15
6. The number of common terms in the two sequence $17,21,25, \ldots . .817$ and 16, 21, 26, .. 851 is;
(a) 28
(b) 39
(c) 40
(d) 87
7. Unseramble the letter n the following words and find the odd one.
(a) ONGEAR
(b) NOONI
(c) ALPEP
(d) AUVAG
8. A bus starts from its depot filled to seating capacity, It stops at a point A where $1 / 6^{\text {th }}$ of the passengers alight and 10 board the bus. At point $\mathrm{B}, 1 / 5^{\text {th }}$ of the passengers alight and 3 boards the bus. At point C which is the last stop, all the 55 passengers alight. The capacity of the bus is;
(a) 96
(b) 99
(c) 66
(d) 90
9. Kha-kha is an obscure island which is inhabited by two types of people, the 'Yes' type and the 'No' type. Native of type 'Yes' ask only questions the right answer to which is 'Yes' while those of tpe 'No' ask only questions the right answer to which is 'No'. For example the 'Yes' type will ask questions like "is 2 plus 2 equal to 4"? While the 'No' type will ask question like is 2 plus 2 equal to 5 ? The following question is based on your visit to the island kha-kha.
Kevin and Kumar and brothers from the island. Kumar asks you. Is at lest one of us is of type 'No'? You can conclude that;
(a) Kevin 'No' Kumar is 'Yes'
(b) Both are 'Yes'
(c) Kevin is 'Yes' Kumar is 'No'.
(d) Both are 'No'
10. Raman was born on March 5, 1970 Lakshman was born 25 days before Raman. The year when they took birth, the Republic Day fell on Monday. What is the day of birth of Lakshman.
(a) Sunday
(b) Monday
(c) Wednesday
(d) Saturday
11. P, Q, R and S are four logical state3ments such that if P is true, then Q is true, if Q is true, then R is true, and if S is true, then at least one of Q and R is false. The it follows that
(a) if S is false, then both Q and R true
(b) if at least one of Q and R is true, then S is false.
(c) if P is true, then S is false.
(d) if Q is true, then S is true.
12. A, B, C, D, E, F and G are members of a family consisting of four adults, three children, three males and four female. Out of the children F and G are girls. A and D are brothers and A is doctor, E is an engineer married to one of the brothers and has two children. B is married to D and G is their child. Who is C ?
(a) E's daughter
(b) A's son
(c) G's brother
(d) F's father
13. A block is set right at 5 a.m. The clock losses 16 minutes in 24 hours. What will be the correct time when the clock indicates 10 p.m. on the $3^{\text {rd }}$ day ?
(a) 11 pm
(b) $10: 45 \mathrm{pm}$
(c) $11: 15 \mathrm{pm}$
(d) 12 pm
14. The day after the day after tomorrow is four days after Monday. What day is it today ?
(a) Monday
(b) Tuesday
(c) Wednesday
(d) Thursday

Question from $\mathbf{2 5}$ to $\mathbf{2 7}$ are based on the following:

- There are six hours P, Q, R, S, T and U, three on either side of a road.
- The houses are of different colours- red, blue, green, orange, yellow and white.
- All the houses are of different heights.
- T, the tallest house is exactly opposite to the red coloured house.
- The shortest house is exactly opposite to the green coloured house.
- U , the orange coloured house is located between P and S.
- R the yellow coloured house is exactly opposite to P.
- Q, the green coloured house is exactly opposite to U.
- P , the white coloured hosue is taller than R, but shorter than S and Q .

25. Which is the second largest house?
(a) Q
(b) R
(c) S
(d) Cannot determined
be
26. Which of the second shortest houses?
(a) P
(b) R
(c) S
(d) None
27. What is the colour of the tallest house ?
(a) Red
(b) Blue
(c) Green
(d) Yellow
28. How many pairs of letters are there in the word NECESSARY which have as many letters between them in the word as there are between them in the alphabet and in the same order.
(a) One
(b) Two
(c) Three
(d) Four
29. What is missing number is the series, $4,7,11,18$, 47,, 123, 199 ?
(a) 76
(b) 77
(c) 86
(d) 87

Question from 30 to 32 are based on the following:

- A, B, C, D, E and F are six members in a family in which there are two married couples.
- D is brother of F.
- Both D and F are lighter than B.
- B is mother of D and lighter than E.
- C a lady, is neither heaviest nor lightest in the family.
- E is lighter than C.
- The grandfather in the family is the heaviest.

30. Which of the following is a pair of married couples;
(a) $A B$
(b) $B C$
(c) $A D$
(d) $B E$
31. Who among the following will be in the second place if all the members in the family are arranged in a descending order of their weights?
(a) C
(b) A
(c) D
(d) Data indequate
32. How is C related to D ?
(a) Grandmother
(b) Cousin
(c) Sister
(d) Mother

Question from 31 to 35 are based on the following:

- Eleven students, A, B, C, D, E, F, G, H, I, J and K are sitting in the firt row of the class facing the teacher.
- D who is to the immediate left of F is second to the right of C.
- A is second to the right of E, who is at one of the ends.
- J is the immediate neighbor of A and B and third to the left of G .
- H is to the immediate left of D and third to the right of I.

33. Who is sitting in the middle of the row ?
(a) B
(b) C
(c) G
(d) I
34. If E and D, C and B, A and H and K and F interchange their position, which of the following pairs of students are sitting at the ends ?
(a) D and E
(b) E and F
(c) D and K
(d) K and F
35. Which of the following groups of friends is sitting to the right of G ?
(a) CHDE
(b) CHDE
(c) IBJA
(d) None of these

Question from 36 to 39 are based on the following:

- A group of six friends are sitting around a hexagonal table, each one at one corner of the hexagon.
- Ram is sitting opposite to Rames
- Jyoti is sitting next to Seeema.
- Neeta is sitting opposite to Seema but not next to Ram.
- Amrit has a person sitting between Ramesh and himself.

36. If Seema and Jyoti mutually interchange their positions, then who will be sitting opposite to Neeta?
(a) Jyoti
(b) Ram
(c) Seema
(d) Ramesh
37. If Neeta sists to the right of Amrit, then who is sitting to the left of Amrit.
(a) Ramesh
(b) Neeta
(c) Jyoti
(d) Ram
38. Who is sitting between Amrit and Ramesh?
(a) Neeta
(b) Jyoti
(c) Seema
(d) Ram
39. Who is sitting opposite to Jyoti ?
(a) Ramesh
(b) Neeta
(c) Amrit
(d) Seema
40. A group of 360 children are seated in n rows for a group photo session. Each row contains three less children than the row in front of it. Which one of the following number of rows is not possible ?
(a) 3
(b) 4
(c) 5
(d) 6
41. Consider a hard disk with 16 recording surfaces $(0-15)$ having 16384 cylinders $(0-16383)$ and each cylinder contains 64 sectors $(0-63)$ Data storage capacity in each sector is 512 bytes. Data are organized cylinder-wise and the addressing format is < cylinder no., surface no., sector no. >. A file of size 42797 KB is stored in the disk and t he starting disk location of the file is $<1200,9$, $40>$. What is the cylinder number of the last sector of the file, if it is stored in a contiguous manner ?
(a) 1284
(b) 1282
(c) 1286
(d) 1288
42. Consider the following minterm expression for F.
$F(P, Q, R, S)=\Sigma 0,2,5,7,8,10,13,15$
The minterm 2, 7, 8 and 13 are do not care terms. The minimal sum of products form for F is;
(a) $Q \bar{S}+\bar{Q} S$
(b) QS + QS
(c) $\bar{Q} \bar{R} \bar{S}+\bar{Q} R \bar{S}+Q \bar{R} S+Q R S$
(d) $\bar{P} \bar{Q} \bar{S}+\bar{P} Q S+P Q S+P \bar{Q} \bar{S}$
43. The Bollean expression represented by the following Venn diagram is;

(a) a XOR b
(b) $a^{\prime} b+a b$ '
(c) $a b+a^{\prime} b^{\prime}$
(d) $\left(a+b^{\prime}\right)\left(a^{\prime}+b\right)$
44. The range of n-bit signed magnitude representation is;
(a) 0 to $2^{n}-1$
(b) $-\left(2^{n-1}-1\right)$ to $\left(2^{n-1}-1\right)$
(c) $-\left(2^{n}-1\right)$ to $\left(2^{n-1}-1\right)$
(d) 0 to $2^{n-4}-1$
45. A hard disk has a rotational speed of 6000 rmp . Its average latency time is;
(a) $5 \times 10^{-3} \mathrm{sec}$
(b) 0.05 sec
(c) 1 sec
(d) 0.5 sec
46. The 2's complement representation of the number $(-100)_{10}$ in an 8 bit computer is;
(a) 10011011
(b) 01100100
(c) 11100100
(d) 10011100
47. The number of terms in the product sums canonical form of $\left|\left(x_{1}+x_{2}\right)\left(x_{3} x_{4}\right)\right|$ is;
(a) 7
(b) 8
(c) 9
(d) 10
48. Find the odd man out ;
(a) HTTP
(b) FCFS
(c) HTML
(d) TCP/IIP
49. Consider the equation $(43)_{x}=(y 3)_{8}$ where x and y are unknown. The number of possible solutions is;
(a) 4
(b) 6
(c) 5
(d) 7
50. Subtract $(1010)_{2}$ from $(1101)_{2}$ using first complement;
(a) $(1100)_{2}$
(b) $(0101)_{2}$
(c) $(1001)_{2}$
(d) $(0011)_{2}$
51. The number of 5 people groups that can be selected from 9 people when two particular persons are not to be in the same group is;
(a) 126
(b) 35
(c) 91
(d) 252
52. The solution set of equation $\log _{x} 2 \log _{2 x} 2=\log _{4 x} 2$ is;
(a) $\left\{2^{\sqrt{2}}, 2^{\sqrt{2}}\right\}$
(b) $\{1 / 2,2)$
(c) $\left\{1 / 4,2^{2}\right\}$
(d) $\{1 / 4,2\}$
53. If a twelve sides regular polygon is inscribed in a circle of radius 3 centimeters, then the length of each side of the polygon is;
(a) 3
(b) $18-9 \sqrt{3}$
(c) $18+9 \sqrt{3}$
(d) $9(1-\sqrt{3})$
54. If C is the midpoint of $A B$ and P is any point outside $A B$ then;
(a) $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}=2 \overline{\mathrm{PC}}$
(b) $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}=\overline{\mathrm{PC}}$
(c) $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}+2 \overline{\mathrm{PC}}=0$
(d) $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}+\overline{\mathrm{PC}}=\overline{0}$
55. The average marks of boys in class is 52 and that of girls to 42. The average marks of boys and girls combined is 50 , then percentage of boys in the class is;
(a) 80%
(b) 60%
(c) 40%
(d) 20%
56. A box contains 2 blue caps, 4 red caps, 5 green caps and 1 yellow cap. If four caps are picked at random, the probability that none of them is green is;
(a) $7 / 99$
(b) $7 / 12$
(c) $5 / 99$
(d) $5 / 12$
57. The line $3 x+5 y=k$ touches the ellipse $16 x^{2}+$ $25 y^{2}=400$ if ' k ' is;
(a) $\pm \sqrt{5}$
(b) $\pm \sqrt{15}$
(c) ± 25
(d) $\pm \sqrt{35}$
58. If $X=\left\{4^{n}-3 n-1, n \in N\right\}$ and $Y=\{9 n-9, n \in N\}$, then $X \cup Y$ is equal to;
(a) Y
(b) X
(c) N
(d) None of these
59. $\int\left\{\frac{(\log x-1)}{1+(\log x)^{2}}\right\}^{2} d x$ is equal to;
(a) $\frac{x e^{x}}{1+x^{2}}+C$
(b) $\frac{x}{(\log x)^{2}+1}+C$
(c) $\frac{\log x}{(\log x)^{2}+1}+C$
(d) $\frac{x}{x^{2}+1}+C$
60. The volume of the parallelepiped determined by $u=i+2 j-k, v=2 j+3 k$ and $w=7 j-4 k$ is;
(a) 21
(b) 22
(c) 23
(d) 24
61. The vector perpendicular to the plane passing through $(1,-1,0),(-2,1,-1)$ and $(-1,1,2)$ is;
(a) $6 i+6 k$
(b) $6 i+7 k$
(c) $7 i+6 k$
(d) $7 i+8 k$
62. The equation of a circle with diameters are $2 x-$ $3 y+12=0$ and $x+4 y-5=0$ and area of 154 sq. units is;
(a) $x^{2}+y^{2}-6 x+4 y-36=0$
(b) $x^{2}+y^{2}+6 x-4 y-36=0$
(c) $x^{2}+y^{2}-6 x-4 y+25=0$
(d) None of these
63. $\int \frac{x^{2}-1}{x^{3} \sqrt{2 x^{4}-2 x^{2}+1}} d x$ is equal to;
(a) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{x^{2}}+C$
(b) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{x^{3}}+C$
(c) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{x}+C$
(d) $\frac{\sqrt{2 x^{4}-2 x^{2}+1}}{2 x^{2}}+C$
64. If \vec{a}, \vec{b} and $\vec{a}+\vec{b}$ are vectors of magnitude α then the magnitude of vector $a-b$ is;
(a) $\sqrt{2} \alpha$
(b) $\sqrt{3} \alpha$
(c) $\sqrt{3} 2 \alpha$
(d) 3α
65. Which of the following statements is False ?
(a) $2 \in A \cup B$ implies that if $2 \in A$ then $2 \in B$
(b) $[2,3] \subseteq A$ implies that $2 \subseteq A$ and $3 \subseteq A$
(c) $A \cup B \supseteq[2,3]$ implies that $[2,3] \subseteq A \&[2,3] \subseteq B$
(d) $[2] \in A$ and $[3] \in A$ implies that $\{2,3\} \subseteq A$.
66. If $2 x^{2}+7 x y+3 y^{2}+8 x+14 y+\lambda=0$ represents a pair of straight lines, the value of λ is;
(a) 2
(b) 4
(c) 6
(d) 8
67. The area of the region bounded by the lines $y=\mid x$ $-y \mid$ and $y=3-|x|$ is;
(a) 3 sq. units
(b) 4 sq. units
(c) 6 sq. units
(d) 2 sq. units
68. In a triangle $\mathrm{ABC}, \mathrm{a}=4, \mathrm{~b}=3, \Delta \mathrm{BAC}=60^{\circ}$, then the equation for which c is the root is;
(a) $c^{2}+3 c+7=0$
(b) $c^{2}+3 c-7=0$
(c) $c^{2}-3 c+7=0$
(d) $c^{2}+3 c-7=0$
69. If $\cos \theta=\frac{5}{13}, \frac{3 \pi}{2}<\theta<2 \pi$, then $\tan 2 \theta$ is;
(a) $\frac{-120}{119}$
(b) $\frac{-120}{169}$
(c) $\frac{119}{169}$
(d) $\frac{-120}{169}$
70. An expression has 10 equally likely outcomes. Let A and B be two non-empty events of the experiment. If A consists of 4 outcomes, the number of outcomes that B must have so that A and B are independent is;
(a) 2, 4 or 8
(b) 3, 6 or 9
(c) 4 or 8
(d) 5 or 10
71. Let \vec{a}, \vec{b} and \vec{c} tree non zero vectors, no two of which are collinear. If the vector $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a}, then $\vec{a}+2 \vec{b}+6 \vec{c}$ is equal to;
(a) $\lambda \vec{a}$
(b) $\lambda \vec{b}$
(c) $\lambda \overrightarrow{\mathrm{c}}$
(d) $\overrightarrow{0}$
72. The value of a, for which the sum of the squares of the roots of the equation $\times 2-(a-2) x-(a+$ $1)=0$, assume that least value is;
(a) 3
(b) 2
(c) 0
(d) 1
73. For any two events A and B, the probability that at least one of them occur is 0.6 . If A and B occurs simultaneously with a probability 0.3 then $\mathrm{P}\left(\mathrm{A}^{\prime}\right)+$ $P\left(B^{\prime}\right)$ is;
(a) 0.9
(b) 1.15
(c) 1.1
(d) 1.0
74. Two finite sets A and B are having m and n elements. The total numbers subsets of the first set is 56 more than the total number of subsets of the second set. The value of m and n are;
(a) 7, 6
(b) 6, 3
(c) 8,7
(d)
75. The probability that A speaks truth is $4 / 5$ while this probability for B is $3 / 4$. The probability that they contradict each other when asked to speak on a fact is;
(a) $3 / 20$
(b) $1 / 5$
(c) $7 / 20$
(d) $4 / 5$
76. The sum of the expression
$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots .+\frac{1}{\sqrt{80}+\sqrt{81}}$
is;
(a) 7
(b) 8
(c) 9
(d) 10
77. Consider the function ' f ' defined by $f(x)=\left\{\begin{array}{ll}x^{2}-1, & x<3 \\ 2 a x, & x \geq 3\end{array}\right.$ for all ral numbers x. If f is continuous at $x=3$, then value a is;
(a) 8
(b) $3 / 4$
(c) $1 / 8$
(d) $4 / 3$
78. Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is;
(a) $8 / 9$
(b) $7 / 9$
(c) $2 / 9$
(d) $1 / 9$
79. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is;
(a) $3 / 5$
(b) $1 / 5$
(c) $2 / 5$
(d) $4 / 5$
80. If $3^{x}=4^{x-1}$, then $x=$
(a) $\frac{2-\log _{3} 2}{2 \log _{3} 2-1}$
(b) $\frac{2}{2 \log _{3} 2-1}$
(c) $\frac{2-\log _{3} 2}{2 \log _{3} 2+1}$
(d) $\frac{2 \log _{3} 2}{2 \log _{2} 3-1}$
81. The matrix A has x rows and $(x+5)$ columns and the matrix D has y rows and ($11-y$) columns. If both the matrices $A B$ and BA exist, then the value of x and y are;
(a) 8,3
(b) 3,5
(c) 3,8
(d) 8,5
82. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is the 30°.
(a) 10 m
(b) 20 m
(c) 30 m
(d) 40 m

83. There are n equally spaced points $1,2, \ldots ., \mathrm{n}$ marked on the circumference of a circle. If the point 15 is directly opposite of the point 49 , then the total number of points is;
(a) 50
(b) 68
(c) 66
(d) 70
84. Let $S=\{1,2, \ldots ., n\}$. The number of possible pairs of form (a, B) with $A \subseteq B$ for subsets A, B of S is;
(a) 2^{n}
(b) 3^{n}
(c) n !
(d) $\sum_{k=a}^{n}\binom{n}{k}\binom{n}{n-k}$
85. Sum of the roots of the equations
$4^{x}-3\left(2^{x+3}\right)+128=0$ is;
(a) 5
(b) 6
(c) 7
(d) 8
86. If the sum of the slopes of the lines given by $x^{2}-$ $2 c x y-7 y^{2}=0$ is four times their product, then the value of ' c ' is;
(a) 1
(b) -1
(c) -2
(d) 2
87. The system of equations
$x+y+2 z=a$
$x+z=b$
$2 x+y+3 z=c$ has a solution if;
(a) $B=c$
(b) $c=a+b$
(c) $c=a+2 b$
(d) $a=b=c$
88. Let $f(x)=x^{2}-b x+c, b$ is an odd positive integer. If $(x)=0$ has two prime number as roots and $b+$ $c=35$, then the global minimum value of $f(x)$ is;
(a) $\frac{-183}{4}$
(b) $\frac{173}{16}$
(c) $\frac{-81}{4}$
(d) $\frac{17}{2}$
89. The vertex of the parabola whose focus is $(-1,1)$ and directrix is $4 x+3 y-24=0$ is;
(a) $\left(0, \frac{3}{2}\right)$
(b) $\left(0, \frac{5}{2}\right)$
(c) $\left(1, \frac{3}{2}\right)$
(d) $\left(1, \frac{5}{2}\right)$
90. The number of points in $(-\infty, \infty)$, for which $x 2-x$ $\sin x-\cos x=0$ is;
(a) 6
(b) 4
(c) 2
(d) 0
91. There are 4 books on fairly tales, 5 novels and 3 plays. In how many ways can they be arranged in the order, books on fairly tales, novels and then plays so that the books of the same category are put together ?
(a) 17280
(b) 103680
(c) 51840
(d) 360
92. Suppose a population A has 100 observations 101, 102, 200 and another population B has 100 observations $151,152, \ldots . ., 250$. If V_{A} and V_{B} represents variance of the two population respectively, then V_{A} / V_{B} is;
(a) $9 / 4$
(b) $4 / 9$
(c) 1
(d) $2 / 3$
93. If \vec{a}, \vec{b} are vectors such that $|\vec{a}+\vec{b}|=\sqrt{29}$ and $\vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b}$ then a possible value of $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$ is;
(a) 0
(b) 3
(c) 4
(d) 8
94. Let $x_{1}, x_{2}, \ldots x_{n}$ be n observation such that $\Sigma x_{i}^{2}=400$ and $\Sigma x_{i}=80$. Then a possible value of ' n ' among the following is;
(a) 10
(b) 15
(c) 20
(d) 8
95. Area of the greatest rectangle that can be inscribed in the ellipse is;
(a) $\sqrt{a b}$
(b) $2 a b$
(c) $a b$
(d) a / b
96. Two common tangents to the circle $x^{2}+y^{2}=2 a^{2}$ and parabola $y^{2}=8 a x$ are
(a) $x= \pm(y+2 a)$
(b) $x= \pm(x+2 a)$
(c) $x= \pm(y+a)$
(d) $y= \pm(x+a)$
97. If $a_{1}, a_{2}, \ldots, a_{n}$ are in A.P. and $a_{1}=0$ then the value
$\left(\frac{a_{3}}{a_{2}}+\frac{a_{4}}{a_{3}}+\ldots+\frac{a_{n}}{a_{n-1}}\right)-a_{2}\left(\frac{1}{a_{2}}+\frac{1}{a_{1}}+\ldots+\frac{1}{a_{n-2}}\right)$
equal to;
(a) $(\mathrm{n}-2)+\frac{1}{(\mathrm{n}-2)}$
(b) $\frac{1}{n-2}$
(c) $n-2$
(d) $n-\frac{1}{n-2}$
98. The value of $\cos 20^{\circ}+\cos 100^{\circ}+\cos 140^{\circ}$ is;
(a) 0
(b) $\frac{1}{\sqrt{2}}$
(c) $\frac{1}{2}$
(d) 1
99. The permutations of ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$) are listed in lexicographic order. Which of the following permutations are just before and just after the permutation bacdefg?
(a) agfedbc and bacdfge
(b) agfedcb and badcefg
(c) agfebcd and bacedgf
(d) agfedcb and bacdegf
100. The foci the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide. Then the value of b^{2} is;
(a) 5
(b) 7
(c) 9
(d) 1

Question from 101 to 104 are based on the following:
While cement is the basic raw material for producing cement tiles and cement paint which are used extensively in building construction. The main consumers of white cement are therefore, cement title and cement paint manufacturing units. These consumers, mostly in the small scale sector, are today facing a major crisis because of a significant increase in the price of white cement during a sort period. The present annual licensed production capacity of white and grey cement in a country is approximately 3.5 lakh tones. The average demand of 2-2.5 lakh tones. This means that there is idle capacity to the tune of the laksh tones or more. The price is therefore, not a phenomenon arising out of inadequate production capacity but evidently because of artificial scarcity created by the manufactures in their self interest.
The main reason for the counting spurt in cement price is its decontrol. As it is, there is stiff competition in the cement paint and tile manufacturing business. Any further price revision at this stage is bound to have a severe adverse impact on the market conditions. The Government should take adequate steps to ensure that suitable control are brought in. Else it should allow import of cement.
101. Which of the following words has the opposite meaning as the word 'basic' as used in the passage ?
(a) Vital
(b) Unimportant
(c) Acidic
(d) Last
102. Why is the price of cement going up ?
(a) Because the Government is controlling quota.
(b) Because of export of white cement.
(c) Because of the large usage of white cement.
(d) None of these.
103. What is the crisis faced by the cement tile manufactures as described in the passage ?
(a) White cement prices as very high.
(b) White cement is not of good quality.
(c) White cement usage is high.
(d) White cement is priced very low.
104. Which of the following words has the same meaning as the word 'artificial' as used in the passage?
(a) Deliberate
(b) Prolonged
(c) Practical
(d) Unnatural
105. Choose the words that accurately signifies a person who makes money by starting or running business;
(a) Antreprenour
(b) Andrapreneur
(c) Entraprenour
(d) Entrepreneour
106. Which of the following is correct phrase to describe a group of insects?
(a) A flock of insects
(b) A swarm of insects
(c) A school of insects
(d) A shoal of insects
107. Which of the following has closest meaning to the word REPUTATION ?
(a) Character
(b) Respect
(c) Fame
(d) Honor
108. Which of the following word means 'Theatrical' ?
(a) thrilling
(b) histrionic
(c) delicate
(d) delicious
109. Identify the word which is different from the rest of the word;
(a) indisputable
(b) uncertain
(c) dubious
(d) doubtful
110. Select the pair that best expression a relationship similar to the expressed in SCALE : TONE
(a) Physician : Medicine
(b) Wave : Amplitude
(c) Spectrum : Colour
(d) Rainbow : Shower
111. Choose the answer which best express the meaning of the idiom/phrase to bum a hole in the pocket'.
(a) Steal from someone's pocket.
(b) to destroy other's belongings.
(c) To be very miserly.
(d) Money that is spent quickly.
112. Choose the correct alternative to fill the blank;
(a) upon
(b) out on
(c) in
(d) at
113. Fill in the blank with suitable article. darkest cloud has a silver lining
(a) An
(b) A
(c) The
(d) From
114. Fill in the blank with appropriate adjective. The steak is completely \qquad it is cold and tough.
(a) edible
(b) erratic
(c) unswerving
(d) thedible
115. Fill in the blank with a suitable preposition. We have been looking for a new flat ages.
(a) since
(b) for
(c) during
(d) in
116. Fill in the blank with appropriate verb. Where is he? He should home hours ago.
(a) be
(b) have been
(c) had been
(d) were
117. Fill in the blank with appropriate question tag. You should not be here on a holiday,
(a) should not you
(b) should you not
(c) would not you
(d) should you
118. Change the following sentence into passive sentenct. They studied Mathematics last year.
(A) Mathematics was studied by them last year.
(B) Mathematics were studied by them last year
(C) Mathematics has been studied by them last year.
(D) Mathematics studied them last year.
118. Change the following sentence into passive sentenct.
(a) Mathematics was studied by them last year.
(b) Mathematics were studied by them last year.
(c) Mathematics has been studied by them last year.

